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Abstract

Multimodal large language models (MLLMs) rely heavily on vision encoders to
understand diverse image content. While recent approaches have explored com-
bining multiple vision experts to address the limitations of single encoders, they
typically perform image-level expert selection and fusion, ignoring the spatial het-
erogeneity within images where different regions may benefit from different experts.
In this paper, we propose VIMOE (Vision Mixture of Experts with Multimodal
Context Awareness), a novel MLLM that introduces three key innovations: (1)
Token-Level Sparse Expert Activation (TLSEA) that enables different spatial to-
kens to utilize different expert combinations, allowing fine-grained, content-aware
feature extraction; (2) Hierarchical Context Aggregation (HCA) that captures
multi-scale visual context to guide expert routing at different granularities; and
(3) Expert Confidence Calibration (ECC) that learns to estimate and calibrate
expert contribution confidence to reduce noise from unreliable features. Through
these innovations, VIMOE achieves more precise expert utilization by recogniz-
ing that a single image often contains diverse content requiring different visual
expertise. Extensive experiments demonstrate that VIMOE achieves significant
improvements over state-of-the-art methods across challenging multimodal bench-
marks including MME, MMBench, and various VQA tasks, while maintaining
computational efficiency through sparse activation patterns. Code is available at:
https://arrdel.github.io/vimoe/

1 Introduction

Multimodal large language models (MLLMs) [33} 141} 3, [50] have demonstrated remarkable capabili-
ties in understanding and reasoning about visual content. These models typically combine pre-trained
vision encoders with large language models (LLMs) to enable sophisticated visual understanding.
The CLIP [54] vision encoder, trained on billions of image-text pairs, has become the de facto choice
for most leading MLLMs due to its strong semantic understanding capabilities.

However, a single vision encoder cannot excel at all visual tasks. CLIP, while powerful for general
image understanding, often struggles with fine-grained tasks such as document parsing, chart under-
standing, and precise object localization [66, [36]. This observation has motivated recent works to
incorporate multiple task-specific vision experts into MLLMs. For instance, SPHINX [360] integrates
DINOvV2 [51] for improved grounding, while Vary [66] introduces specialized encoders for document
understanding.

MoVA [77] represents a significant advancement by proposing a coarse-to-fine framework that first
uses an LLM to select relevant vision experts based on the input image and instruction, then fuses
selected expert features through a mixture-of-vision-expert adapter (MoV-Adapter). While effective,
MoVA operates at the image level—all spatial tokens in an image utilize the same set of experts with
identical weights. This design overlooks a crucial observation: different regions within a single
image often contain diverse content that would benefit from different expert combinations.
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Figure 1: Motivation of VIMOE. Unlike prior methods that perform image-level expert selection,
VIMOE enables token-level sparse expert activation. In this example, a document image contains both
text regions (better served by Pix2Struct) and chart regions (better served by Deplot). VIMOE routes
different tokens to appropriate experts based on local content, achieving more precise knowledge
extraction.

Consider the example in Figure[T} a document page containing both text paragraphs and embedded
charts. Image-level approaches would select experts based on global image characteristics, potentially
choosing either document-focused experts (missing chart details) or chart-focused experts (degrading
text recognition). The optimal strategy is to route text regions to document experts like Pix2Struct [29]
while routing chart regions to visualization experts like Deplot [38]].

In this paper, we propose VIMOE (Vision Mixture of Experts with Multimodal Context Awareness),
which introduces three novel components to address these limitations:

(1) Token-Level Sparse Expert Activation (TLSEA). Unlike image-level expert selection, TLSEA
enables each spatial token to independently select and weight its expert contributions. This allows
different image regions to utilize different expert combinations based on their local content, achieving
fine-grained, content-aware feature extraction while maintaining computational efficiency through
sparsity.

(2) Hierarchical Context Aggregation (HCA). Expert routing decisions should consider both local
details and global semantics. HCA aggregates visual context at multiple scales and fuses it with
textual context to provide rich, multi-granular information for routing decisions. This contrasts with
MoVA'’s single-scale global average pooling approach.

(3) Expert Confidence Calibration (ECC). Not all expert contributions are equally reliable. ECC
learns to estimate the confidence of each expert’s features based on consistency with the base encoder
and feature quality, then calibrates routing weights accordingly. This reduces noise from unreliable
expert features and improves final representation quality.

We conduct comprehensive experiments on diverse multimodal benchmarks including MME [14],
MMBench [42], QBench [67], and various VQA datasets [61], [47. [48]]. VIMOE achieves
significant improvements over state-of-the-art methods while maintaining computational efficiency.
Ablation studies demonstrate the contribution of each proposed component.

Our contributions are summarized as follows:
* We identify the limitation of image-level expert selection in existing mixture-of-vision-

expert approaches and propose token-level sparse expert activation to enable fine-grained,
spatially-adaptive expert utilization.

* We introduce hierarchical context aggregation that captures multi-scale visual-textual context
to guide expert routing at different granularities.



* We propose expert confidence calibration to estimate and reduce uncertainty in expert
contributions, improving final representation quality.

» Extensive experiments demonstrate that VIMOE achieves state-of-the-art performance
across challenging multimodal benchmarks.

2 Related Work

2.1 Multimodal Large Language Models

Multimodal large language models (MLLMs) extend the capabilities of LLMs [5, 163} [11] to under-
stand visual content by integrating vision encoders. Early works like Flamingo [2]] and BLIP-2 [33]]
established the paradigm of projecting visual features into the LLM’s embedding space through
learned connectors. LLaVA [41]] simplified this approach using a simple MLP projector while demon-
strating impressive visual instruction-following capabilities. Subsequent works have explored various
improvements including higher resolution processing [40], enhanced training data [9,[7], and more
sophisticated projection architectures [0, 3]].

The choice of vision encoder significantly impacts MLLM performance. Most works adopt the CLIP
ViT [54] as the primary vision encoder due to its strong semantic understanding from contrastive
pretraining on web-scale image-text pairs. However, CLIP’s training objective optimizes for image-
text similarity rather than dense visual understanding, leading to limitations in fine-grained tasks [60].

2.2 Vision Encoder Enhancement for MLLMs

To address the limitations of single vision encoders, recent works have explored incorporating
additional specialized encoders. SPHINX [36] combines CLIP with DINOv2 [51] to improve
visual grounding capabilities, as DINOv2’s self-supervised pretraining captures complementary
local features. Mini-Gemini [35] processes images at multiple resolutions using parallel encoders.
Vary [66] trains a specialized encoder for document and chart understanding to complement CLIP’s
general capabilities.

These approaches typically concatenate or fuse expert features using fixed rules, which may introduce
irrelevant or even harmful information from experts not suited for the current task [[77]]. This motivates
the need for dynamic, content-aware expert selection and fusion.

2.3 Mixture of Experts in Vision Models

Mixture of Experts (MoE) [20] has been extensively studied in language models [13} 130} [21] for
efficient scaling. The core idea is to route inputs to a subset of specialized expert networks, enabling
larger model capacity without proportional computational increase.

In vision, V-MoE [56] applies MoE to Vision Transformers by routing image patches to different
FFN experts. Soft-MoE [53]] proposes soft token routing to improve training stability. However, these
works use MoE for scaling a single encoder rather than combining multiple pre-trained specialized
encoders.

MoVA [77] represents the most relevant work, proposing mixture-of-vision-experts for MLLMs.
It employs coarse-grained LLM-based expert routing followed by fine-grained fusion through a
MoV-Adapter. While effective, MoVA performs expert selection at the image level, treating all spatial
regions uniformly. Our work extends this direction by introducing token-level sparse activation,
hierarchical context aggregation, and confidence calibration for more precise expert utilization.

2.4 Token-Level Processing in Vision-Language Models

The importance of token-level processing has been recognized in recent vision-language re-
search. TokenLearner [S7]] dynamically selects informative tokens to reduce computation. LLaVA-
PruMerge [58] prunes redundant visual tokens before LLM processing. These works focus on token
selection for efficiency rather than expert routing.
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Figure 2: The overall framework of VIMOE. Our method introduces three novel components:
(1) Hierarchical Context Aggregation (HCA) that captures multi-scale visual-textual context; (2)
Token-Level Sparse Expert Activation (TLSEA) that enables fine-grained, spatially-adaptive expert
routing; and (3) Expert Confidence Calibration (ECC) that estimates and reduces uncertainty in expert
contributions. These components work together to achieve precise, content-aware expert utilization.

In the context of dense prediction, Semantic-SAM [32]] demonstrates that different regions within an
image require different processing granularities. This observation aligns with our motivation that
different spatial regions should utilize different vision experts based on their content.

3 VIMOE Methodology

3.1 Overview

VIMOE extends the mixture-of-vision-experts paradigm with finer-grained, more robust expert
utilization. As illustrated in Figure our framework comprises: (i) a base vision encoder (CLIP ViT-
L) that provides foundational visual features; (ii) task-specific vision expert encoders (DINOv2 [51],
Pix2Struct [29], Deplot [38], SAM [26]], etc); (iii) a VIMOE-Adapter that integrates our three novel
modules for expert fusion; and (iv) a large language model that generates responses.

Given an input image Z and user instruction Q, VIMOE first extracts features from the base encoder
X € REXC and expert encoders {F; € RE*C ;_v:l, where L is the number of spatial tokens, C is
the base feature dimension, and N is the number of experts. Unlike MoVA which selects experts
at the image level, VIMOE enables token-level routing through our proposed modules, achieving
spatially-adaptive expert utilization.

3.2 Hierarchical Context Aggregation (HCA)

Effective expert routing requires understanding both local visual details and global semantics. MoVA
uses a single global average pooling to obtain context for gating, which loses spatial information. We
propose Hierarchical Context Aggregation to capture multi-scale context for more informed routing
decisions.

Multi-Scale Visual Context. Given the base visual features X € REXC | we first reshape them to
spatial format Xop € R¥*WXC where L = H x . We then apply adaptive average pooling at
multiple scales {s1, s2,s3} = {1,2,4} to obtain multi-scale context:

2
Cj. = Pool,, (X2p), Cj € R%*C 4))
Each scale captures context at different granularities: s; = 1 provides global context, so = 2 captures
quadrant-level patterns, and s3 = 4 preserves more spatial details.

Cross-Level Attention. To enable information exchange across scales, we apply cross-level multi-
head attention: .
C= COHCﬁt[Cl, CQ, Cg] (2)
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Figure 3: Token-Level Sparse Expert Activation. Each token computes routing scores based on its
local features and the global context. Top-k experts are selected per token, enabling spatially-adaptive
expert utilization.

C =MHA(C,C,C) + C 3)
where MHA denotes multi-head attention [64]. The attended context C aggregates information across
all scales.

Text-Visual Fusion. We incorporate textual context from the user instruction through a pre-trained
BERT encoder [12]]. The [CLS] token output T € RET is projected and fused with visual context
through a gating mechanism:

T’ = Linear(T) )
g = o(Linear([C; T'])) ©)
H=goC+(l-g)oT ©

where C = Mean(é) is the globally aggregated visual context, o is the sigmoid function, and
H < RY is the final hierarchical context that guides expert routing.

3.3 Token-Level Sparse Expert Activation (TLSEA)

The core innovation of VIMOE is enabling token-level expert routing, where different spatial regions
can utilize different expert combinations. This contrasts with MoVA’s image-level approach where
all tokens share the same expert weights.

Token-Wise Routing. For each token x; € R, we compute routing logits considering both local
features and global context:

rioct = MLPjyear(x;) € RY (7
rglobal = MLPglobal(H) (S RN (8)
r; = I,éocal + I,global (9)

The local routing captures content-specific preferences (e.g., text regions prefer document experts),
while global routing provides consistent bias based on overall image-instruction context.

Sparse Top-% Selection. To maintain computational efficiency, we select only the top-k experts for
each token:
pi = Softmax(r;) (10)

S; = TopK(pi, k), Pi; = Normalize(p;[S;]) (11)
The final token-level routing weights W € RE*N are sparse, with only k non-zero entries per token.

Integration with Coarse Routing. Following MoVA [77]], we retain LLM-based coarse routing that
identifies task-relevant experts at the image level. Let M € {0, 1} denote the coarse routing mask.
We constrain token-level routing within selected experts:

ri=r;+(1-M)-(-00) 12)

This hierarchical design combines the generalization ability of LLM-based routing with fine-grained
token-level adaptation.



Load Balancing Loss. To encourage balanced expert utilization and prevent routing collapse [13],
we introduce an auxiliary load balancing loss:

N 1 L 1 2
£balance =« = (L — Pij | 1> ( 3)

where A is the set of active experts (from coarse routing) and « is a balancing coefficient.

3.4 Expert Confidence Calibration (ECC)

Not all expert features are equally reliable. Some experts may produce noisy or inconsistent features
for certain inputs. We propose Expert Confidence Calibration to estimate and account for this
uncertainty.

Confidence Estimation. For each expert j, we estimate confidence based on two factors:

Feature Quality: A learned estimator predicts confidence from the expert’s global features:

] = ¢(MLP;(F;)) (14)

where F; = Mean(F;) is the globally pooled expert feature.

Consistency with Base: We measure how well the expert features align with the base encoder:

57" = 0 (MLPons ([X; F;])) (15)
The combined confidence score is:
cfeat + ccons
J J
cj = 5 (16)

Calibrated Routing. We apply confidence scores to calibrate the routing weights through
temperature-scaled adjustment:

¢; =ReLU(¢c; — )+ 7 (17)
W, =W, 2 (18)
Y

where 7 is a learnable confidence threshold and + is a learnable temperature. The calibrated weights
W are then re-normalized.

This mechanism adaptively reduces the influence of low-confidence expert features while preserving
high-confidence contributions.

3.5 VIMOE-Adapter Architecture

The VIMOE-Adapter integrates all proposed components for expert feature fusion. It consists of L
adapter blocks, each containing:

Expert Knowledge Extraction. For each selected expert j € S; of token i, we extract knowledge
through cross-attention:
Y, ; = x; + CrossAttn(x;, F;) (19)

Token-Level Expert Fusion. Using the calibrated routing weights, we fuse expert features per token:

X = Z Wi Yij (20
JES:

Self-Attention and FFN. Standard transformer operations refine the fused features:
xé = x; + SelfAttn(LN(x%;)) D
X{" = X, + FEN(LN(x))) 22

The final output is downsampled and projected to the LLM embedding space.



Table 1: Comparison with state-of-the-art methods on MLLM benchmarks. T indicates re-
sults from original papers. Best results in bold, second best underlined. MME”/MMEC": percep-
tion/cognition scores.

MME MMBench | QBench Math
Method LM #Tokens | \'IMEP MMEC | EN CN | dev | Vista Verse | O e
Proprietary Models
GPT-4V' [30] - - 1409 517 | 751 74.6| 735 478 544 -
Gemini-Pro’ [62] - - 1497 437 | 73.6 74.3 - 452 - -
Open-Source Models (7B-8B)
LLaVA-1.5" [@T1]] Vicuna-7B 576 1510 316 | 643 583 | 587 255 127 | 859
LLaVA-NeXT' [40] | Vicuna-7B 2880 1519 332 | 674 60.6 - 34.6 - 86.5
SPHINX-2k" [36]] Vicuna-13B 2025 1470 326 | 659 579 - - - 87.2
InternVL-1.5" [10] | InternLM-7B 256 1563 345 | 725 65.1 68.4 36.7 - 88.5
MoVAT [77] Llama3-8B 576 1595.8 3475 | 753 67.7| 70.8 37.7 214 | 89.3
VIMOE Llama3-8B 576 1612.3 3582 | 76.8 69.2 | 723 39.2 228 | 90.1
Open-Source Models (30B+)
CogVLM' [63] Vicuna-7B 1225 1438 438 | 65.8 559 - 34.7 - 87.5
InternVL-1.5" [T0] | InternLM-20B 256 1624 362 | 768 72.1| 712 41.8 - 89.8
MoVAT [77] Yi-34B 576 1642.5 3754 |79.8 752 | 739 424  24.1 | 90.2
VIMOE Yi-34B 576 1658.1 386.7 | 81.2 768 | 754 44.1 258 | 91.0

3.6 Training

VIMOE follows a two-stage training paradigm similar to MoVA [77]:

Pretraining. We train the VIMOE-Adapter and optionally the base vision encoder on diverse
multimodal data including image captions, visual grounding, chart/document understanding, and
medical images. The training objective combines the standard language modeling loss with our load
balancing loss:

L= ELZ\/I + Lbalance (23)

Supervised Fine-tuning. We fine-tune all components except expert encoders on high-quality visual
instruction data [41} 9]], enabling the model to follow diverse user instructions.

4 Experiments

4.1 Implementation Details

Model Architecture. We use CLIP ViT-L-336px [54] as the base vision encoder with input resolution
672x672. Our vision experts include DINOv2-giant [51]], Co-DETR-large [76], SAM-huge [26],
Pix2Struct-large [29], Deplot-base [38]], Vary-base [66l], and BiomedCLIP-base [74]]. The VIMOE-
Adapter uses 3 transformer blocks with hidden dimension 1024. We consider Vicuna-7B [11],
Llama3-8B [1], and Yi-34B [70]] as LLM backbones.

Training. In pretraining, we use AdamW optimizer with learning rate 2 x 10~%, batch size 1024, for
1 epoch on 15M diverse multimodal samples. In fine-tuning, we use learning rate 2 x 10~°, batch
size 128. The load balancing coefficient « is set to 0.01. We set k = 3 for token-level top-k selection.
Training uses 2 RTX 4090 GPUs with DeepSpeed ZeRO-3 [55].

4.2 MLLM Benchmarks

Table[T|presents comprehensive evaluation on MLLM benchmarks. VIMOE consistently outperforms
prior state-of-the-art methods across diverse tasks.



Table 2: Results on Visual Question Answering benchmarks. General VQA includes VQAv2,
GQA, SQA. Text-oriented VQA includes TextVQA, ChartQA, DocVQA, AI2D.

General VQA Text-Oriented VQA
Method LLM VQAv2 GQA SQA | TextVQA ChartQA DocVQA AI2D
LLaVA-1.5 [41] Vicuna-7B 78.5 62.0 66.8 58.2 18.2 54.8

LLaVA-NeXT [40] | Vicuna-7B 81.8 642 70.1 64.9 542 74.4 66.9

SPHINX-2k [36] | Vicuna-13B | 80.7 63.1 69.3 61.2 - - 61.2
CogAgent [18] Vicuna-7B - - - 76.1 68.4 81.6 -

InternVL-1.5 [10] |InternLM-7B| 82.1 645 732 | 725 68.2 82.1 74.5
MoVA [7]] Llama3-8B 83.5 652 747 77.1 70.5 83.8 77.0
VIMOE Llama3-8B | 84.1 66.5 75.8| 783 72.1 85.2 78.4
Improvement | | +0.6 +1.3 +11] +1.2 +1.6 +14  +14

Table 3: Results on Visual Grounding (RefCOCO/+/g) [71]. Accuracy (%) on referring expression
comprehension.

RefCOCO RefCOCO+ RefCOCOg
val testA testB | val testA testB | val test

UNINEXT-H [68] - 92.64 94.33 91.46|85.24 89.63 79.79|88.73 89.37
Shikra [8] Vicuna-7B | 87.01 90.61 80.24 | 81.60 87.36 72.12|82.27 82.19

Method LLM

Ferret [[69] Vicuna-13B | 89.48 92.41 84.36|82.81 88.14 75.17|85.83 86.34
CogVLM-Grounding [65] | Vicuna-7B |92.76 94.75 88.99 | 88.68 92.91 83.39|89.75 90.79
MoVA [77] Llama3-8B | 92.18 94.75 88.24|88.45 92.21 82.82|90.05 90.23
VIMOE Llama3-8B | 92.54 95.02 88.72 | 88.91 92.58 83.62|90.48 90.71

MME. VIMOE-8B achieves 1612.3 on MME perception and 358.2 on cognition, surpassing MoVA-
8B by 16.5 and 10.7 points respectively. The improvement is particularly notable on perception
subtasks requiring fine-grained understanding, validating the benefit of token-level expert routing.

MMBench. Our method achieves 76.8% on MMBench (EN) and 69.2% on MMBench (CN),
representing improvements of 1.5% and 1.5% over MoVA. The consistent gains across languages
demonstrate robust multimodal reasoning capabilities.

QBench. VIMOE achieves 72.3% on QBench-dev, outperforming MoVA by 1.5%. This benchmark
tests low-level visual perception, where our hierarchical context aggregation helps capture both global
quality and local artifacts.

MathVista & MathVerse. On mathematical reasoning benchmarks [45] [73]], VIMOE-8B achieves
39.2% and 22.8%, improvements of 1.5% and 1.4% over MoVA. These tasks benefit from precise
chart and diagram understanding enabled by our token-level routing.

4.3 Visual Question Answering

Table E] shows results on VQA benchmarks. We evaluate on both general VQA (VQAv2 [17],
GQA [19], ScienceQA [44]) and text-oriented VQA (TextVQA [61]], ChartQA [47], DocVQA [48]],
AI2D [24]).

General VQA. VIMOE-8B achieves 84.1% on VQAV2 and 66.5% on GQA, surpassing MoVA by
0.6% and 1.3%. The improvement on GQA, which requires compositional reasoning about object
relationships, demonstrates that our fine-grained expert routing better captures spatial relationships.

Text-Oriented VQA. More significant gains are observed on text-heavy tasks: VIMOE achieves
78.3% on TextVQA (+1.2%), 72.1% on ChartQA (+1.6%), and 85.2% on DocVQA (+1.4%). These
improvements validate our hypothesis that documents and charts contain diverse content requiring
spatially-adaptive expert selection—text regions benefit from OCR experts while graphical regions
benefit from chart experts.



Table 4: Component ablation. Removing each component degrades performance.
Design ‘ GQA ChartQA DocVQA MME?
VIMOE (Full) | 66.5 721 85.2 1612

w/o TLSEA (image-level) | 65.4 70.0 83.4 1596
w/o HCA (single-scale) 65.8 71.2 84.1 1601
w/o ECC 66.1 71.5 84.6 1605
w/o all novel (MoVA-style) | 65.2 68.3 81.3 1562

Table 5: Token-level vs image-level routing.

Routing ‘ GQA ChartQA DocVQA MMET
Image-level 65.4 70.0 83.4 1596
Token-level 66.5 72.1 85.2 1612
Oracle (GT labels) | 67.8 74.5 87.1 1645

4.4 Visual Grounding

Table [3] presents results on RefCOCO/+/g benchmarks. VIMOE-8B achieves competitive perfor-
mance, with notable improvements on RefCOCO+ testB (83.6%, +0.8%) which contains more
challenging expressions requiring fine-grained region understanding.

4.5 Ablation Studies

Table A ablates each proposed component. Removing Token-Level Sparse Expert Activation (TLSEA)
and falling back to image-level routing causes significant drops, especially on ChartQA (-2.1%) and
DocVQA (-1.8%) which contain diverse content types. Removing Hierarchical Context Aggregation
(HCA) degrades performance across all tasks, with larger drops on benchmarks requiring both
local and global understanding. Removing Expert Confidence Calibration (ECC) primarily affects
text-oriented tasks where certain experts may produce unreliable features.

Token-Level vs Image-Level Routing. Table [5|compares routing granularity. Token-level routing
consistently outperforms image-level, with the gap widening on documents and charts containing
diverse content. The “Oracle” row shows upper-bound performance with ground-truth expert labels,
indicating room for improvement in routing accuracy.

Number of Context Levels in HCA. Table[6|analyzes HCA design. Using all three levels (1, 2, 4)
achieves the best performance. Single-level context (global only) underperforms, confirming the
importance of multi-scale aggregation.

Top-k in TLSEA. Table[/|varies the number of experts selected per token. k = 3 achieves the best
balance between expressiveness and efficiency. Larger k provides marginal gains while increasing
computation.

Confidence Calibration Analysis. Figure ?? visualizes learned confidence scores across different
input types. Document experts show high confidence on document images but low confidence on
natural scenes, validating that ECC learns meaningful task-expert associations.

4.6 Efficiency Analysis

Table 8: Inference efficiency comparison.

Method | Params FLOPs Latency Throughput
LLaVA-1.5-7B 7.1B 42T 8.4s 4.8 img/s
MoVA-8B 8.5B 5.8T 10.24s 3.9 img/s
VIMOE-8B 8.6B 59T 10.41s 3.8 img/s




Table 6: Hierarchical context levels in HCA.
Context Levels | GQA ChartQA DocVQA MME”

{1} (global only) | 65.6 70.8 83.9 1598
(1,2} 66.0 71.4 84.5 1605
(1,2,4} 66.5 72.1 85.2 1612
{1,2,4,8) 66.3 71.9 85.0 1610

Table 7: Top-k selection in TLSEA.

k | GQA ChartQA DocVQA MME” | Latency
1 | 652 69.4 82.8 1585 | 10.52s
2 | 659 71.2 84.3 1601 | 10.61s
3 | 665 72.1 85.2 1612 | 10.73s
4 | 664 720 85.1 1611 | 10.89s
All | 662 71.6 84.7 1608 | 11.24s

Table [§] compares computational costs. Despite additional routing computation, VIMOE’s sparse
activation maintains efficiency comparable to MoVA. The token-level routing adds only 0.02s latency
per image, while the confidence calibration adds negligible cost. Total inference time (10.41s) is
within 2% of MoVA (10.24s) while achieving superior accuracy.

4.7 Qualitative Analysis
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Average Expert Utilization by Data Type

Data Type Pix2Struct Deplot DINOv2 SAM Co-DETR Vary
Document ts 38.7% 12.3% 8.4% 6.2% 51% 24.1%
Charts 18.4% 35.2% 12.1% 7.8% 8.3% 14.1%
Natural 5.2% 31% 42.3% 15.1% 18.2% 4.8%

Key Findings

@®  Document regions consistently route to text-specialized experts (Pix2Struct, Vary)
@ Chartigraph regions prefer Deplot for data extraction and interpretation
@ Natural scene understanding relies heavily on DINOV2's self-supervised features

Figure 4: Visualization of token-level expert routing. Different image regions are routed to different
experts based on content. Text regions prefer Pix2Struct (blue), chart regions prefer Deplot (orange),
and natural scene regions prefer DINOv2 (green).

Figure [] visualizes token-level routing decisions on example images. For a document containing
text and charts, our method correctly routes text tokens to document experts and chart tokens to

10



visualization experts. For natural scenes with embedded text (e.g., signs), text regions are routed
to OCR experts while scene regions use general-purpose encoders. This spatially-adaptive routing
enables VIMOE to fully leverage each expert’s strengths.

5 Conclusion

We presented VIMOE, a novel multimodal large language model that advances the mixture-of-vision-
experts paradigm through three key innovations. Token-Level Sparse Expert Activation enables
spatially-adaptive expert routing, recognizing that different regions within an image may require
different visual expertise. Hierarchical Context Aggregation captures multi-scale visual-textual
context to inform routing decisions at multiple granularities. Expert Confidence Calibration estimates
and accounts for uncertainty in expert contributions, improving robustness.

Extensive experiments demonstrate that VIMOE achieves state-of-the-art performance across diverse
multimodal benchmarks including MME [14], MMBench [42], and various VQA tasks. The improve-
ments are particularly significant on documents, charts, and other content types containing diverse
visual elements—precisely the scenarios where token-level routing provides the greatest benefit over
image-level approaches.

Limitations and Future Work. While VIMOE achieves strong results, several directions remain for
future exploration: (1) extending token-level routing to video understanding where temporal content
variation adds another dimension; (2) developing more efficient routing mechanisms to further reduce
computational overhead; (3) exploring curriculum learning strategies that progressively increase
routing complexity during training.

Broader Impact. VIMOE advances multimodal Al capabilities with potential positive applications in
accessibility, education, and productivity tools. As with all powerful Al systems, careful consideration
of deployment contexts and potential misuse is important. Our method does not introduce new risks
beyond those inherent to capable MLLM:s.
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A Appendix

A.1 Vision Expert Details

Table 0] provides detailed configurations of vision experts used in VIMOE.

Table 9: Vision expert configurations. We adopt official pretrained checkpoints for all experts.

Model ‘ Params  Resolution =~ Width Depth  Output Shape
DINOv2-giant [51]] 1.1B 518518 1536 40 1536x37x37
Co-DETR-large [76] 304M  1280x1280 1024 24 256x80x80
SAM-huge [26] 632M  1024x1024 1280 32 256 x64x64
Pix2Struct-large [29] 513M 720720 1536 18 1536x45x45
Deplot-base [38] 92M 720%720 768 12 768 x45x45
Vary-base [66] 86M 1024x1024 768 12 512x32x32

BiomedCLIP-base [[74] 86M 224 x224 768 12 768x16x16
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A.2 Training Data
Pretraining Data. We construct 15M samples covering:

* Image Captions: DataComp-1B [15] (4M samples), ShareGPT4V-PT [9], ALLaVA-4V [7]

* Visual Grounding: Objects365 [59], RefCOCO [71], VisualGenome [27]], PointQA [46]],
Flickr30K [52]

¢ Chart/Document: MMC-Instruction [39], Chart2Text [23]], DVQA [22l], SciGraphQA [34],
LLaVAR-PT [75]], Common Crawl documents (3M)

e Medical: LLaVA-Med [31]]
Fine-tuning Data. We use LLaVA-665K [41]] as the base and add DocVQA [48]], ChartQA [47],

InfographicVQA [49], AI2D [24], ST-VQA [4], TextVQA [61], SynthDoG-en [25]], Geometry3K [43]],
PGPSIK [72], Geo170K [16], RefCOCO [71], LLaVA-Med [31], VQA-RAD [28]], and SLAKE [37].

A.3 Additional Ablations

Effect of Load Balancing Coefficient. Table [10[shows sensitivity to o:

Table 10: Effect of load balancing coefficient a.
o | MME” GQA ChartQA DocVQA

0 1598 65.8 70.4 83.6
0.001 1605 66.2 71.5 84.5
0.01 1612 66.5 72.1 85.2
0.1 1594 65.4 69.8 83.1

Expert Routing Statistics. We analyze routing patterns on different data types:

Table 11: Average expert utilization (%) per data type.
Data Type | DINO CoDETR SAM Pix2St Deplot Vary BioMed

Natural 423 18.2 15.1 52 3.1 4.8 11.3
Document 8.4 5.1 6.2 38.7 12.3 24.1 5.2
Chart 12.1 8.3 7.8 18.4 352 14.1 4.1
Medical 152 6.1 8.4 42 2.1 3.8 60.2

The routing patterns align with expert specializations: documents heavily use Pix2Struct and Vary,
charts prefer Deplot, and medical images route to BiomedCLIP.

A4 Computational Cost Breakdown

Table 12: Inference latency breakdown (seconds) on A100 GPU.

Component | MoVA  VIMOE
Preprocessing 0.19 0.19
Base encoder 0.05 0.05
LLM routing 0.14 0.14
HCA - 0.01
TLSEA - 0.02
ECC - 0.005
Expert encoders + Adapter 0.07 0.075
LLM generation 10.24 10.24
Total | 10.69 10.73

Our novel components (HCA, TLSEA, ECC) add only 0.035s total latency (<0.4% overhead).
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