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Abstract—This paper addresses the fundamental challenge of
collaborative multi-agent object-goal navigation for autonomous
inspections in complex, real-world environments. While single-
agent approaches to object-goal navigation have demonstrated
considerable promise in recent years, scaling these methods to
larger environments necessitates the coordination of multiple
robots to achieve efficient coverage, faster task completion,
and robust operation under uncertainty. We introduce SEEK-
Multi, a comprehensive framework that extends semantic-guided
object inspection to multi-robot systems through distributed
belief sharing, collaborative planning, coordinated task alloca-
tion, and adaptive communication protocols. SEEK-Multi enables
multiple agents to share semantic understanding and inspection
findings through a distributed Relational Semantic Network
(RSN) and a shared Dynamic Scene Graph (DSG), maintaining
consistency across the team while accommodating communication
constraints. We propose novel algorithms for collaborative explo-
ration that leverage semantic priors, belief fusion using consensus
protocols with provable convergence guarantees, and conflict-
free task allocation based on auction mechanisms. Our extensive
simulation analyses across diverse environment configurations
demonstrate that SEEK-Multi achieves significant speedup over
single-agent approaches while maintaining high success rates,
with near-linear scaling efficiency for up to four agents and
graceful degradation under communication failures. We validate
our approach through comprehensive simulations including ab-
lation studies, sensitivity analyses, and comparisons with state-
of-the-art multi-agent coordination methods, demonstrating its
practicality for real-world multi-robot inspection scenarios in
industrial, search-and-rescue, and domestic environments. Code
is available at: https://arrdel.github.io/seek-multi/

I. INTRODUCTION

Consider a team of autonomous robots tasked with search-
ing for and inspecting target objects across a large industrial
facility. While a single robot can methodically search each
area, the task completion time scales linearly with the en-
vironment size, making single-agent solutions impractical for
time-critical applications. Deploying multiple robots offers the
potential for significant speedup, but realizing this potential
requires sophisticated coordination to avoid redundant effort
and conflicting actions. This multi-agent object-goal naviga-
tion problem is crucial for time-sensitive applications such
as emergency response, security patrols, industrial inspection,
and search-and-rescue operations [53, 6, 41].

The deployment of multi-robot systems for inspection tasks
has gained significant attention in recent years, driven by ad-
vances in sensing, communication, and computation [44, 43].

Industries ranging from manufacturing to energy production
increasingly rely on autonomous inspection to reduce costs,
improve safety, and enable continuous monitoring [29]. How-
ever, the transition from single-robot to multi-robot inspection
introduces fundamental challenges in coordination, commu-
nication, and decision-making that require novel algorithmic
solutions.

Multi-agent coordination for object-goal navigation presents
unique challenges beyond the single-agent case. First, agents
must efficiently partition the search space to minimize overlap
while ensuring complete coverage, a problem that becomes
increasingly complex as the number of agents and environment
size grow. Second, agents must share observations and update
their beliefs about object locations in a consistent manner,
even with limited communication bandwidth and intermittent
connectivity. Third, the planning framework must account for
the actions and intentions of all agents to avoid conflicts and
maximize team efficiency, requiring coordination mechanisms
that scale gracefully. Fourth, the system must be robust to
communication failures, agent heterogeneity, and dynamic
environmental changes. Fifth, the framework must balance the
benefits of coordination against its computational and com-
munication costs, enabling operation in resource-constrained
scenarios.

Recent work on single-agent semantic-guided naviga-
tion [25, 12, 48, 11] has demonstrated the value of incorporat-
ing prior knowledge and semantic reasoning into object search.
The SEEK framework [25] introduced the Relational Semantic
Network (RSN) for encoding object-room relationships and
showed significant improvements over geometric coverage
approaches. By leveraging semantic priors about where objects
are likely to be found, SEEK enables efficient, informed
search that outperforms uninformed exploration strategies.
However, extending these methods to multi-agent settings
requires addressing the challenges of distributed belief main-
tenance, coordinated planning, and efficient communication
while preserving the semantic reasoning capabilities that make
single-agent approaches effective.

The multi-agent extension of semantic navigation raises
several research questions that motivate our work: How can
semantic beliefs be efficiently shared and fused across multiple
agents with potentially different observations? How should
task allocation incorporate semantic priors while respecting
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Fig. 1: SEEK-Multi enables multiple robots to collaboratively
search for target objects by sharing semantic beliefs and
coordinating their search strategies. Each agent maintains a
local copy of the shared Dynamic Scene Graph (DSG) and
Relational Semantic Network (RSN), with updates propagated
through a distributed communication protocol. The frame-
work supports both centralized and decentralized coordination
modes.

coordination constraints? What communication protocols best
balance information sharing with bandwidth limitations? How
can the system maintain performance under communication
failures and agent heterogeneity?

In this paper, we propose SEEK-Multi, a comprehensive
framework for collaborative multi-agent object-goal navigation
that extends the SEEK architecture to multi-robot teams.
Our approach maintains distributed copies of the Dynamic
Scene Graph (DSG) and Relational Semantic Network (RSN)
across all agents, with efficient protocols for sharing updates
and fusing beliefs. We introduce a collaborative planning
algorithm that computes coordinated task assignments while
accounting for agent positions, capabilities, and intentions. The
framework supports both centralized and decentralized coordi-
nation modes, enabling deployment in various communication
scenarios from reliable infrastructure networks to ad-hoc peer-
to-peer connectivity.

The design of SEEK-Multi is guided by several key prin-
ciples: Semantic awareness: All coordination mechanisms
leverage semantic understanding to improve efficiency. Scala-
bility: Algorithms and communication protocols scale grace-
fully with the number of agents. Robustness: The system
degrades gracefully under communication failures and agent
heterogeneity. Flexibility: The framework supports various
coordination modes and can adapt to different deployment
scenarios.

Our key contributions are:

1) We introduce SEEK-Multi, a comprehensive framework
for collaborative multi-agent object-goal navigation us-
ing distributed semantic reasoning, supporting both cen-
tralized and decentralized coordination;

2) We propose a distributed belief fusion algorithm based

on consensus protocols that enables agents to share and
combine observations efficiently with provable conver-
gence guarantees;

3) We design a collaborative planning algorithm that coor-
dinates task allocation and path planning across multiple
agents using auction-based mechanisms with semantic-
aware bidding;

4) We develop an adaptive communication protocol that
balances information sharing with bandwidth constraints
and provides robustness to message loss;

5) We demonstrate through extensive simulation experi-
ments that SEEK-Multi achieves near-linear speedup
with multiple agents while maintaining high success
rates across diverse environment configurations.

The remainder of this paper is organized as follows. Sec-
tion II reviews related work in multi-robot coordination, se-
mantic navigation, and distributed belief maintenance. Sec-
tion III formally defines the multi-agent object-goal navigation
problem. Section IV presents the SEEK-Multi architecture,
including distributed semantic representations, belief fusion,
and collaborative planning. Section V provides theoretical
analysis of convergence and speedup properties. Section VI
presents experimental results from simulation studies. Sec-
tion VII discusses scalability, heterogeneity, and limitations.
Section VIII concludes with directions for future work.

II. RELATED WORKS

Our work builds upon and integrates advances from sev-
eral research areas: multi-robot coordination, multi-agent path
planning, distributed belief maintenance, semantic navigation,
and scene understanding. We review each area and position
our contributions relative to existing work.

Multi-Robot Coordination: Multi-robot systems have been
extensively studied for tasks including exploration [8, 60],
coverage [14, 23], and search and rescue [37, 32]. Coordina-
tion strategies range from centralized approaches with a single
decision-maker [24] to fully decentralized methods using local
communication [38, 17]. Market-based approaches [20, 63]
provide a middle ground, using auction mechanisms for task
allocation while maintaining scalability. Recent work has
explored learning-based coordination [21, 35], where agents
learn coordination strategies through reinforcement learning.

The choice of coordination architecture significantly im-
pacts system properties. Centralized approaches can achieve
optimal coordination but require reliable communication to
a central node and create a single point of failure [39].
Decentralized approaches offer robustness and scalability but
may sacrifice optimality due to limited global information [61].
Hybrid approaches attempt to balance these tradeoffs by
combining local decision-making with occasional global coor-
dination [63]. Our work supports multiple coordination modes,
allowing deployment in various scenarios.

Multi-Agent Exploration and Search: Coordinated explo-
ration has been studied extensively, with frontier-based meth-
ods [60] forming a foundation for many approaches. Multi-
robot extensions assign frontiers to robots based on distance,



information gain, or other criteria [8, 50]. Recent work has
incorporated semantic information into exploration [40], using
object recognition to guide search toward promising areas.

Search tasks differ from exploration in that they seek spe-
cific targets rather than complete coverage. Multi-robot search
has been studied for static targets [27], moving targets [16],
and adversarial scenarios [58]. Probabilistic approaches main-
tain belief distributions over target locations and plan searches
to maximize detection probability [7, 33]. Our work extends
these concepts by incorporating semantic priors that capture
object-room relationships.

Multi-Agent Path Planning: Coordinated path planning
for multiple agents must balance efficiency with collision
avoidance [51, 34]. Approaches include coupled planning
that considers all agents jointly [49, 59], prioritized planning
that plans sequentially [56, 9], and velocity-obstacle meth-
ods for dynamic environments [57, 4]. Conflict-based search
(CBS) [49] has emerged as an efficient approach for optimal
multi-agent path finding, using a two-level search that resolves
conflicts lazily.

For continuous domains and longer time horizons, ap-
proaches based on potential fields [54], model predictive
control [36], and learned policies [47] have shown promise.
Our framework uses intention sharing and conflict resolution to
enable efficient distributed planning without requiring coupled
optimization over all agents.

Distributed Belief Maintenance: Maintaining consistent
beliefs across multiple agents is fundamental to multi-robot
perception [19, 3]. Consensus algorithms [38, 42] provide a
principled approach to fusing estimates from multiple agents,
with well-understood convergence properties. Distributed si-
multaneous localization and mapping (SLAM) [18, 15] ad-
dresses the related problem of building shared maps from
distributed observations.

Belief fusion must account for correlations between agent
observations to avoid overconfidence [31]. Covariance inter-
section [30] provides conservative fusion when correlations
are unknown, while channel filters [13] track information flow
to avoid double-counting. Our belief fusion approach uses
weighted consensus with confidence tracking to balance these
concerns in a computationally efficient manner.

Semantic Navigation and Scene Understanding: Recent
advances in semantic navigation leverage foundation models
for improved reasoning [12, 48, 62, 22]. These approaches
use vision-language models to understand scene semantics
and guide navigation toward likely target locations. The
SEEK framework [25] demonstrated the value of encoding
object-room relationships in a Relational Semantic Network,
achieving significant improvements over geometric coverage
approaches.

Scene graphs provide structured representations of environ-
ments that capture objects, rooms, and their relationships [45,
28, 2]. Dynamic Scene Graphs (DSG) [46] extend this to
include temporal information and support real-time updates
during robot operation. Multi-robot scene graph construction
has been explored for collaborative mapping [10, 55], but

integration with semantic search remains limited. Our work
extends SEEK to multi-agent settings with distributed belief
sharing, collaborative planning, and efficient communication
protocols that maintain semantic scene graph consistency.

Communication in Multi-Robot Systems: Communication
is fundamental to multi-robot coordination, with significant
research on protocols, bandwidth management, and robust-
ness [61, 41]. Approaches range from continuous commu-
nication assuming reliable infrastructure [8] to intermittent
communication in bandwidth-limited scenarios [26]. Learning-
based methods have explored communication protocol opti-
mization [21, 52], allowing agents to learn what information
to share.

Our communication protocol balances information sharing
with bandwidth constraints, prioritizing high-value updates
while maintaining robustness to message loss through redun-
dancy and acknowledgment mechanisms.

III. PROBLEM FORMULATION

We formally define the multi-agent object-goal navigation
problem, including the environment model, agent capabilities,
communication constraints, and performance metrics.

A. Environment Model

We consider a structured indoor environment represented as
a topological-metric map. The environment is partitioned into
a set of rooms V = {v1,...,vp} connected by traversable
edges £ C V x V. Each room v; has associated attributes
including:

« Semantic type £(v,) € L (e.g., office, kitchen, hallway)

o Geometric extent defining the room boundary

o Set of contained objects O(v;)

o Search time 7(v;) required for thorough inspection

The environment graph G,y = (V,€) may be partially or
fully known a priori, depending on whether a floor plan is
available. Edge weights w(e) represent travel costs between
adjacent rooms.

B. Multi-Agent Object-Goal Navigation

We consider a team of N robots R = {ry,...,ry}
operating in the environment. Each robot r; has state z; € X,
takes actions u; € U, and receives observations z; € Z. The
state space X = SF(2) x V includes the robot’s pose and
current room. The action space U includes navigation actions
(move to adjacent room, move within room) and inspection
actions (search for objects). The observation space Z includes
object detections with associated confidence scores.

The robots communicate through a network with potentially
limited bandwidth and range. We model the communication
graph G! = (R,EL .m) as potentially time-varying, where
(riyrj) € ELum if agents ¢ and j can communicate at time ¢.

The objective is to locate a target object yg of class ylG
as quickly as possible. The target object is located in one
of the rooms, with its location unknown to the robots. We
assume the target is static and detectable with known sensor
characteristics.



C. Observation Model

Each robot has a detection sensor with the following char-
acteristics:

o Detection range dge: maximum distance at which objects
can be detected

« True positive rate py: probability of detecting the target
when in range

« False positive rate pg,: probability of false detection per
observation

« Position noise o,: uncertainty in detected object position

When robot 7; is in room v containing the target object and
performs a search action, the observation model is:

P(z; = detect|yc € v) = pyp - 1[in detection range] (1)

For thorough search of a room (visiting all areas within de-
tection range), the cumulative detection probability approaches
D4, the room-level detection probability.

D. Semantic Prior Model

We leverage semantic priors about object-room relation-
ships, captured in a Relational Semantic Network (RSN). The
RSN encodes the conditional probability of finding an object
class in a room type:

P(y' € £) =RSN(y', ¢) 2)

For example, P(fire extinguisher € kitchen) captures the
prior knowledge that fire extinguishers are commonly found in
kitchens. These priors are learned from datasets of real indoor
environments and can be updated based on domain-specific
knowledge.

Given the room types in the environment, the prior proba-
bility of finding the target in each room is:

P(yg € U(vy))

3
Yoily Pyl € £(vr)) @

Po(yc € vj) =

E. Performance Metrics

We measure performance using the team’s Success weighted
by Path Length (SPL):

l*

N
max(_;_ pi; *)
where S € {0,1} indicates success, [* is the optimal single-
agent path length, and p; is the path length traveled by robot
T

This metric captures both the success rate and the efficiency
of the team’s search. The denominator uses the sum of path
lengths to account for the total resources consumed by the

team. An alternative metric uses the maximum path length to
focus on time-to-completion:

SPLicam = S - (4)

l*

max(max; p;, [*)

We also measure:

o Success rate (SR): Fraction of trials where target is found
within time limit

e Time to completion (TTC): Time steps until target is
found

« Coverage overlap: Fraction of rooms searched by mul-
tiple agents

o Communication efficiency: Messages per successful
search

F. Problem Statement

Problem 1 (Multi-Agent Object-Goal Navigation): Given
a target object class yL, initial robot states {29, ..., 2%}, envi-
ronment graph Ge,y, semantic priors from the RSN, and com-

munication constraints, find a joint policy 7 = (71,...,7N)
that maximizes expected team SPL:
7% = arg max [E [SPL¢ym) (6)
s

stoaf T = f(af, m(bf)), Vi
BTt = (0f, m(bf), 2T, ME)
IME| < B, Vik

where b is robot i’s belief state, M¥ represents messages
received from other robots, and B is the bandwidth constraint.
The belief state b¥ includes:

« Probability distribution P;(y¢) over target location
o Local copy of the Dynamic Scene Graph G;

o Estimates of other agents’ states and intentions

« History of searched rooms

G. Communication Model

Robots communicate through message passing with the
following constraints:

« Range: Robot 7; can communicate with r; if ||z; — ;|| <
dcomm

o Bandwidth: Maximum B messages per time step per
robot

o Latency: Messages arrive with delay

« Reliability: Messages are delivered with probability 1 —
Dloss

We define several message types with associated priorities:

o Object detections (priority 3): Location and confidence
of detected objects

o Belief updates (priority 2): Probability distributions over
rooms

« Intentions (priority 2): Planned actions for coordination

o DSG updates (priority 1): Changes to the shared scene
graph

o Heartbeats (priority 0): Status and position updates

Higher priority messages are transmitted first when band-

width is limited.

IV. SEEK-MULTI ARCHITECTURE

SEEK-Multi extends the single-agent SEEK architecture to
multi-robot teams through three key components: distributed
semantic representations, collaborative planning, and a com-
munication protocol for belief sharing. Figure 2 illustrates the
overall system architecture.



Fig. 2: SEEK-Multi system architecture. Each agent maintains
local copies of the DSG and RSN beliefs, updated through
observation and communication. The collaborative planner
coordinates task allocation, while the communication module
manages information sharing.

A. System Overview

Each robot in SEEK-Multi maintains the following compo-
nents:

e Local DSG: A copy of the Dynamic Scene Graph repre-
senting the environment structure and discovered objects

o Local RSN Belief: Probability distribution over target
location based on semantic reasoning

o Task Allocator: Component for coordinating room as-
signments with other agents

o Local Planner: Navigation planner for reaching assigned
targets

o Communication Module: Interface for sending and re-
ceiving messages

The robots operate in a sense-plan-act loop, with the fol-

lowing phases each time step:

1) Sense: Receive observations from sensors and messages
from other agents

2) Update: Update local DSG and beliefs based on new
information

3) Coordinate: Exchange intentions and resolve conflicts

4) Plan: Compute actions to execute

5) Act: Execute planned actions

6) Communicate: Share updates with other agents

B. Distributed Semantic Representations

1) Shared Dynamic Scene Graph: The Dynamic Scene
Graph (DSG) provides a hierarchical representation of the
environment, capturing spatial relationships at multiple levels
of abstraction [45]. In SEEK-Multi, each robot maintains a
local copy of the DSG G; = (V;, &;), with layers representing:

¢ Object layer: Individual objects with positions and se-

mantic labels

o Place layer: Navigable locations within rooms

+ Room layer: Semantic regions with room types

o Building layer: Overall structure and connectivity

The DSG is initialized from a common blueprint (floor plan)
if available, or built incrementally through exploration. When
robot r; discovers new information (e.g., an object or updated
traversability), it broadcasts an incremental update:

AG; = {(op, node/edge, data, t;, c;)} (7

where op € {add, update, delete}, ¢; is a timestamp, and ¢; is
a confidence score.

Robots merge updates using timestamp-based conflict reso-
lution with confidence weighting:

G; + Merge(G;, AG;) if t; > 1% ve; > % (8)

The merge operation handles several cases:

o New nodes/edges: Added directly to local DSG
« Updated attributes: Newer or higher-confidence values
take precedence
o Conflicting observations: Resolved using confidence-
weighted averaging for continuous attributes
o Deletions: Marked as deleted but retained for consistency
checking
2) Distributed Relational Semantic Network: The Rela-
tional Semantic Network (RSN) predicts the probability of
finding the target object in each room based on semantic priors.
The RSN encodes relationships between object classes and
room types learned from training data:

RSN :Y x £ = [0,1] 9)

where ) is the set of object classes and L is the set of room
types.

In SEEK-Multi, each robot maintains a local belief state
over target location:

Pi(yc) = {Pi(yc € vj) : v; €V} (10)
The belief is initialized from the RSN prior:
RSN(y%, £(v;
Pio(yG c Uj) _ (yG7 (vj)) (11)

2k RSN(yg, {(vr))

Beliefs are updated from local observations using Bayesian
inference:

P(zilyc € v) - Pi(yc € v)
Pi(yg € v|z;) =
e € vl) = = Pladua € )+ Py € )
When robot r; completes a thorough search of room v
without finding the target:

(12)

(1 —pa) - Pi(yc € v)
1 —pa- Pi(ye €v)
where pg is the detection probability for a thorough search.
When a potential target is detected with confidence cge:

Pi(yg € v|~det) =

13)

Cdet * Prp + (1 - Cdet) - Pip
Z

Pi(yg € vldet) = (14)

where 7 is the normalizing constant.



C. Distributed Belief Fusion

Robots share belief updates through a consensus-based
fusion protocol that ensures beliefs converge across the team
while accommodating communication delays and losses.

1) Weighted Consensus Fusion: When robot r; receives
belief P;(yg) from robot r; with confidence c;, it updates
its belief using weighted averaging:

¢i- Pi(yg € v) +¢; - Pi(ya € v)

P (yg € v) = P
T J

15)

The confidence is updated based on the number and quality
of observations:

ne : new
A = min (Cma)u \/ 2+ c? + o - |obs! \)

This update rule has several desirable properties:

(16)

o Beliefs from agents with more observations have higher
influence

o Confidence grows sublinearly to prevent overconfidence

o The fusion is symmetric and associative

2) Periodic Synchronization: For environments with limited
or intermittent communication, we use periodic synchroniza-
tion:
> jen: G Pilye € v)

> jeN; G

where N; is the set of robots in communication range of r;.
Synchronization events are triggered:

PY(yg € v) =

a7)

o Periodically at fixed intervals

o When belief divergence exceeds threshold

o When agents come into communication range after dis-
connection

3) Handling Correlated Observations: When agents ob-
serve the same room or share information, their beliefs become
correlated. To avoid overconfidence from double-counting, we
track observation sources:

Sources; (v) = {(r;,t;) : 7; observed v at time ¢;}  (18)

When fusing beliefs, we discount contributions from
already-incorporated observations:

w; = ¢; - (1 — Overlap(Sources;, Sources;)) (19)

D. Collaborative Planning

1) Joint MDP Formulation: We formulate the multi-agent
planning problem as a factored Markov Decision Process
(MDP) that decomposes across agents while capturing coor-
dination requirements. The joint state X = (z1,...,ZnN,S)
includes robot states and the search state s (which rooms have
been searched). The joint action U = (uy,...,uy) specifies
actions for all robots.

The transition probability factors as:

N
P(X'|x,U) = P(s'|s,U) [ | P, )

i=1

(20)

The reward function encourages finding the target while
penalizing travel distance and coordination conflicts:

R(X,U) = Rgna - 1[found] -~ c(u;) — A- Conflict(d) (21)
i=1
where Conflict((/) penalizes multiple robots searching the
same room.
The conflict penalty is computed as:

Conflict(U) = Z max(0, |{i : u; targets v}| — 1)
veV
2) Task Allocation: We decompose the planning problem
into task allocation and local execution. Tasks correspond
to searching rooms, with priority based on the belief and
semantic value:

Priority(v) = P(yg € v) - Value(v) - (1 — Searched(v)) (23)
The value function incorporates semantic information:
Value(v) = RSN(y4, £(v)) - Area(v)

We use an auction-based allocation mechanism inspired by
market-based multi-robot coordination [20]:

(22)

(24)

) Priority (v)
Bid;(v) = ——F—F+—
i(v) Cost;(v) + €
where Cost; (v) is the travel cost from robot i’s current position
and LoadFactor; balances workload across agents.
The load factor penalizes agents with many assigned tasks:

(26)

The allocation is computed iteratively using a distributed
auction:

1) Each robot computes bids for all unassigned high-

priority tasks

2) Robots broadcast their top-%k bids

3) Tasks with a single bidder are tentatively assigned

4) For contested tasks, the highest bidder wins; ties broken

by robot ID

5) Losing robots update their bids and the process repeats

6) Process terminates when all tasks assigned or maximum

iterations reached

Algorithm 2 provides detailed pseudocode.

3) Intention Sharing and Conflict Resolution: Robots share
their intended actions to enable coordination without central-
ized control. Intention messages include:

o Target room for next search

o Expected arrival time

o Planned path (compressed representation)

o Alternative targets in case of conflict

When multiple robots intend to search the same room, we
use priority-based resolution:

Winner = argmax (Bid;(v), —Cost;(v), —ID;)

i€ Contestants

- LoadFactor; (25)

LoadFactor; = exp(—/ - |Assigned,|)

27)

This lexicographic ordering prioritizes by bid, then by prox-
imity, then by ID for deterministic tie-breaking. The losing
robot replans to the next best room according to its local belief,
excluding rooms claimed by higher-priority agents.



Algorithm 1 SEEK-Multi Communication Protocol

1: On observation z; in room v:

2:  Update local belief P;(ya|z;)

3:  Update confidence c¢; < ¢; + «

4:  Broadcast (BELIEF_UPDATE, v, P;(yg € v), ¢;)

5. if detection with confidence > 6 then

6: Broadcast (DETECTION, position, confidence) (pri-
ority 3)

7: if confirmed target then

8 Broadcast (TARGET_FOUND, position) to all

9: On action selection u; targeting room v:

10:  Broadcast (INTENTION, v, arrival_time, path)
11:  Wait for acknowledgments or timeout

12:  if conflict detected then

13: Resolve by priority; replan if yielding

14: On receive (BELIEF UPDATE, v, P;, ¢;) from r;:
15:  Fuse: P;(v) + clilo)te by

citcj

16:  Update: ¢; < /c? +¢3

17: On receive (INTENTION, room, time, path) from r;:
18:  Update expected position of 7;

19:  if conflict with own intention then

20: Compare priorities; yield if lower priority

21: On receive (TARGET_FOUND, position):

22:  Navigate to position for verification/assistance
23: Periodic (every Thearteat StEPS):

24:  Broadcast (HEARTBEAT, position, status, load)
25:  Share incremental DSG updates

26:  Prune old messages from queue

4) Path Planning and Collision Avoidance: Each robot
plans paths to assigned rooms using A* search on the en-
vironment graph. To avoid physical collisions, robots share
their planned paths and use temporal coordination:

o Paths are time-indexed with expected positions at each
time step
o Conflicts are detected when paths intersect within a safety
margin
o Lower-priority robots delay or reroute to avoid collisions
For real-time execution, we use a velocity obstacle ap-
proach [57] for local collision avoidance.

E. Communication Protocol

Algorithm 1 describes the complete communication proto-
col for SEEK-Multi.
The protocol includes mechanisms for reliability:

o Critical messages (detections, target found) use acknowl-
edgments

o Heartbeats enable detection of agent failures

o Message sequence numbers allow detection of lost mes-
sages

o Periodic full synchronization recovers from inconsisten-
cies

V. THEORETICAL ANALYSIS

We provide theoretical analysis of SEEK-Multi’s conver-
gence properties and expected speedup, establishing conditions
under which the distributed algorithms perform well.

A. Convergence of Belief Fusion

The consensus-based belief fusion protocol ensures that
agent beliefs converge to a common distribution under mild
assumptions on the communication graph.

[Belief Convergence] Under the consensus-based belief fu-
sion protocol, if the communication graph is connected over
any time interval of length 7, and beliefs are updated at
bounded intervals, then agent beliefs converge to a common
distribution exponentially fast.

The belief fusion update can be written in matrix form. Let
Pk € RVXM pe the matrix of beliefs at time k, where PZ; is
agent ¢’s belief about room j. The fusion update is:

Prtt — hpk (28)
where W* is a row-stochastic matrix determined by the
confidence weights and communication graph at time k.

For connected graphs, the product Hf;LkT Wt is a scram-
bling matrix (all entries positive) for sufficiently large 7" [38].
By the theory of products of stochastic matrices, P* converges
to a consensus value:

k
P

=P} Vi (29)

lim

k—o0

The rate of convergence is determined by the second-largest
eigenvalue of the average weight matrix:

[P* —1P*|| < C- A5 (30)

where Ay < 1 for connected graphs.

If all agents have equal confidence and the communication
graph is complete, beliefs converge to the arithmetic mean of
initial beliefs.

The convergence result ensures that agents will eventually
agree on target probabilities, enabling coordinated search even
when communication is intermittent.

B. Speedup Analysis

We analyze the expected speedup from using multiple
agents under idealized conditions.

[Multi-Agent Speedup] For N agents with perfect coordi-
nation, no communication overhead, and uniform search costs,
the expected time to find the target satisfies:

E[Ty] < E[T:] 40 <logN>

N N 3D

where T’y is the completion time with /N agents.

With optimal task allocation, agents search disjoint sets of
rooms in decreasing probability order. Let p; > py > ... >
pas be the room probabilities sorted in decreasing order. With
N agents, agent i searches rooms {7,7 + N,i+ 2N,...}.



The expected time for a single agent is:

(32)

With N agents searching in parallel, the expected time is
bounded by:

M j-1
E[Tv] < }V;wm R (SR

The ceiling introduces an additive term of O(log N/N)
when the probability distribution has finite entropy.

[Sublinear Speedup Bound] In the presence of coordination
overhead T.oorg per agent and communication delays §, the
speedup is bounded by:

N
Speedup(N) <

SIH(N 1) .

Teoord+90
E[T1]

This bound shows that coordination overhead and commu-

nication delays reduce the achievable speedup, with the effect

becoming more pronounced as N increases.

C. Task Allocation Optimality

[Auction Convergence] The distributed auction algorithm
converges to a stable allocation in O(M log M) iterations,
where M is the number of tasks.

The auction can be viewed as a discrete optimization pro-
cess where prices increase monotonically for contested tasks.
Each price increase resolves at least one conflict. Since prices
are bounded (tasks become unprofitable above a threshold), the
process terminates. The number of price increases is bounded
by O(M log M) for markets with bounded valuations [5].

The resulting allocation may not be globally optimal but
provides an e-competitive solution:

[e-Competitive Allocation] The auction-based allocation
achieves total utility within Ne of the optimal allocation,
where € is the minimum price increment.

D. Communication Complexity

[Message Complexity] Under the SEEK-Multi communica-
tion protocol, the expected number of messages per time step
is O(N?) for full connectivity and O(N - d) for graphs with
average degree d.

Each agent broadcasts belief updates, intentions, and heart-
beats. With full connectivity, each broadcast reaches N — 1
agents, giving O(N?) messages. For sparse graphs, broadcasts
reach only neighbors, giving O(N - d) messages.

The quadratic scaling with full connectivity motivates the
use of sparse communication topologies for large teams.

VI. EXPERIMENTAL RESULTS

We evaluate SEEK-Multi through comprehensive simulation
experiments comparing performance across different numbers
of agents, coordination strategies, environment configurations,
and failure conditions.

A. Simulation Setup

1) Implementation: We implement SEEK-Multi in Python
using NumPy for numerical computation and NetworkX for
graph operations. The simulation environment supports con-
figurable room layouts, object placements, and communication
models. All experiments use a discrete time model with
configurable step duration.

2) Environment Configuration: We evaluate on three envi-
ronment types of increasing complexity:

o Small Office (12 rooms, 300 m?): entrance, lobby, 2 of-
fices, conference room, kitchen, break room, 2 hallways,
restroom, storage, server room

e Medium Building (24 rooms, 800 m?): multiple floors
with offices, labs, common areas, and utility rooms

o Large Facility (48 rooms, 2000 m?): industrial-scale
environment with warehouses, control rooms, and spe-
cialized areas

Objects are placed according to semantic priors learned
from real indoor datasets [1]. Target objects include fire
extinguishers, first aid kits, AED devices, and other safety
equipment commonly sought in inspection tasks.

3) Sensor and Communication Models: Sensor model pa-
rameters:

o Detection range: 5 m (10 m with thorough search)
e True positive rate: 0.9

« False positive rate: 0.05

« Position noise: ¢ = 0.5 m

Communication model parameters:

o Communication range: 50 m (can be varied)
o Bandwidth: 10 messages/step

o Latency: 1 step

o Default packet loss: 0%

4) Baselines: We compare SEEK-Multi against several
baselines:

« Single-Agent SEEK [25]: Original single-robot semantic
search

o Frontier-Based Multi-Robot [60]: Classic frontier allo-
cation without semantic guidance

+ Random Walk: Independent random exploration by each
agent

o Greedy Coverage: Agents greedily select nearest unex-
plored room

e« No Coordination: SEEK-Multi without coordination
(agents plan independently)

B. Scaling Experiments

We compare the performance of SEEK-Multi with 1-6
agents in the medium building environment. Table I shows
results averaged over 100 trials per configuration.

Figure 3 visualizes the scaling behavior. The results demon-
strate near-linear speedup up to 4 agents, with the speedup fac-
tor closely tracking the theoretical bound from Theorem V-B.
Beyond 4 agents, we observe diminishing returns due to:

e Increased coordination overhead



Multi-Agent Scaling Performance

Speedup and SPL vs. Number of Agents (Medium Building Environment, 100 trials)
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Fig. 3: Search efficiency vs. number of agents. SEEK-Multi
achieves near-linear speedup up to 4 agents, with diminishing
returns beyond due to coordination overhead. Error bars show
standard deviation over 100 trials.

TABLE I: Multi-agent performance comparison. Speedup is
relative to single-agent SEEK. Results averaged over 100 trials
with standard deviation in parentheses.

Agents SR (%) SPL Steps Speedup
1 (SEEK) 96 0.84 (0.12) 127 (34) 1.0x
2 (SEEK-Multi) 97 0.81 (0.11) 68 (22) 1.87x
3 (SEEK-Multi) 97 0.78 (0.10) 49 (18) 2.59%
4 (SEEK-Multi) 96 0.75 (0.11) 41 (15) 3.10x
5 (SEEK-Multi) 95 0.71 (0.12) 36 (14) 3.53%x
6 (SEEK-Multi) 94 0.68 (0.13) 33 (13) 3.85%

o Limited number of high-probability rooms

o Communication bandwidth saturation

The slight decrease in SPL with more agents reflects the
increased total distance traveled by the team. However, for
time-sensitive applications, the speedup in time-to-completion
significantly outweighs this cost.

C. Baseline Comparison

Table II compares SEEK-Multi against baselines with 3
agents in the medium environment.

SEEK-Multi significantly outperforms all baselines:

e 37% faster than frontier-based exploration

o 48% faster than greedy coverage

e 52% faster than uncoordinated SEEK agents

e 069% faster than random walk

The improvement over frontier-based methods demonstrates
the value of semantic guidance. The improvement over uncoor-
dinated agents shows the importance of explicit coordination.

D. Coordination Strategy Comparison

We compare three coordination strategies in detail:

o Centralized: A coordinator assigns all tasks with global
optimization

TABLE 1II: Comparison with baseline methods (3 agents,
medium environment).

Method SR (%) SPL  Steps
SEEK-Multi (Ours) 97 0.78 49
Frontier-Based 94 0.62 78
Greedy Coverage 91 0.55 94
No Coordination 89 0.52 102
Random Walk 72 0.31 156

TABLE III: Coordination strategy comparison with 3 agents
across environment sizes.

Env. Strategy SPL  Overlap Msg/Step
Centralized 0.82 4.1% 5.2
Small Distributed  0.81 6.3% 2.8
None 0.68 24.7% 0.0
Centralized  0.79 5.2% 4.1
Medium  Distributed  0.78 8.7% 2.3
None 0.61 31.4% 0.0
Centralized 0.74 6.8% 3.8
Large Distributed  0.73 11.2% 2.1
None 0.54 38.6% 0.0

o Distributed: Agents use local auctions with intention
sharing

e No coordination: Agents plan independently using
shared beliefs only

Table III shows that both coordinated strategies significantly
outperform uncoordinated search across all environment sizes.
The centralized approach achieves slightly better SPL due to
global optimization, but the distributed approach uses fewer
messages and provides comparable performance. The coverage
overlap metric shows that coordination reduces redundant
search by 4-5x.

E. Belief Fusion Analysis

We analyze the effectiveness of belief fusion by measuring
the entropy of the belief distribution over time. Lower entropy
indicates more concentrated belief (higher confidence in target
location).

Figure 4 compares three fusion strategies:

o Consensus fusion: Continuous sharing with weighted
averaging

o Periodic sync: Full synchronization every 10 steps

o No fusion: Agents maintain independent beliefs

Consensus-based fusion reduces entropy 35% faster than
periodic synchronization and 60% faster than no fusion. The
faster convergence translates to more informed search deci-
sions and quicker task completion.

We also measure belief divergence between agents:

. 1
DY = — N D (PP

(35)



Collaborative Belief Convergence Analysis
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Fig. 4: Belief entropy over time for different fusion strategies
with 3 agents. Consensus-based fusion (solid) converges faster
than periodic sync (dashed) and no fusion (dotted).

TABLE IV: Performance under communication failures (3
agents, medium environment).

/
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Fig. 5: Performance vs. communication range with 4 agents.
Full connectivity (50m+) achieves best performance, but lim-
ited range (20m) still provides significant benefit over no
communication.

TABLE V: Ablation study (3 agents, medium environment).
Each row removes one component from the full system.

Drop Rate  Centralized Distributed Delta

0% 0.79 0.78 -1.3%

10% 0.76 0.77 +1.3%
20% 0.73 0.75 +2.7%
30% 0.68 0.73 +7.4%
50% 0.64 0.71 +10.9%
70% 0.55 0.66 +20.0%

Configuration SPL  ASPL
Full SEEK-Multi 0.78 —

w/o Semantic priors (RSN)  0.65 -16.7%
w/o Belief fusion 0.71 -9.0%
w/o Task coordination 0.68 -12.8%
w/o Intention sharing 0.72 -7.7%
w/o DSG sharing 0.74 -5.1%

With consensus fusion, average KL divergence drops below
0.1 within 20 steps, compared to 50 steps for periodic sync
and never converging without fusion.

F. Robustness to Communication Failures

We evaluate robustness by randomly dropping a percentage
of messages.

Table IV shows that SEEK-Multi degrades gracefully under
message loss. The distributed strategy is significantly more
robust than centralized coordination:

o At 50% message loss, distributed maintains 91% of

baseline SPL vs. 81% for centralized

e At 70% message loss, the gap widens to 85% vs. 70%

This robustness stems from the distributed belief mainte-
nance and local decision-making in the distributed approach.

G. Communication Range Effects

We vary communication range from 10m (local only) to
100m (full connectivity) in the large facility environment.

Figure 5 shows:

o Full connectivity achieves SPL of 0.75

e 30m range (partial connectivity) achieves SPL of 0.71
(95% of full)

e 20m range achieves SPL of 0.67 (89% of full)

e 10m range (minimal connectivity) achieves SPL of 0.59
(79% of full)

These results demonstrate that SEEK-Multi provides sig-
nificant benefits even with limited communication range, as
agents can still coordinate when in proximity.

H. Ablation Studies

We conduct ablation studies to understand the contribution
of each component.
Table V reveals that:

o Semantic priors (RSN) provide the largest benefit, con-
sistent with single-agent SEEK findings

 Task coordination is crucial for avoiding redundant search

« Belief fusion enables faster convergence to accurate target
estimates

« Intention sharing prevents immediate conflicts

e DSG sharing provides modest improvement by enabling
shared map updates

1. Environment Complexity Analysis

We evaluate how performance scales with environment
complexity.

Table VI shows that SEEK-Multi maintains strong per-
formance across environment sizes. The speedup decreases



TABLE VI: Performance across environment sizes with 3
agents.

Environment Rooms SR SPL  Steps Speedup
Small Office 12 98%  0.82 28 2.71x
Medium Building 24 97%  0.78 49 2.59%
Large Facility 48 94%  0.73 87 2.48 %

slightly with larger environments due to increased communica-
tion distance and coordination complexity, but remains above
2.4x even for 48-room facilities.

VII. DISCUSSION

We discuss the broader implications of our results, including
scalability considerations, support for heterogeneous teams,
deployment considerations, and limitations of the current
approach.

A. Scalability Considerations

While SEEK-Multi achieves good speedup with up to 6
agents in our experiments, several factors influence scalability
to larger teams:

Communication Overhead: Message volume grows with
O(N?) for full connectivity, as shown in our theoretical
analysis. For teams larger than 6-8 agents, this overhead
becomes significant. Potential solutions include:

o Hierarchical communication: Organize agents into clus-
ters with local leaders who communicate across clusters

« Sparse communication graphs: Limit communication to
k-nearest neighbors or agents in the same region

« Attention-based prioritization: Use learned attention
mechanisms to select which updates to share [21]

Coordination Complexity: Task allocation becomes com-
binatorially harder with more agents. The auction-based ap-
proach scales well in practice, but alternative approaches may
be needed for very large teams:

o Spatial decomposition: Partition the environment and
assign teams to regions

o Hierarchical task allocation: Two-level allocation with
region assignment followed by room assignment

o Learning-based coordination: Use multi-agent rein-
forcement learning for implicit coordination [35]

Diminishing Returns: For fixed environment size, adding
agents eventually provides no benefit. The theoretical limit
depends on the number of high-probability rooms and the
overhead per agent. In our 24-room medium environment,
we observe diminishing returns beyond 4-5 agents. Larger
environments can benefit from larger teams.

B. Heterogeneous Teams

SEEK-Multi supports heterogeneous agents with different
capabilities, which is common in practical deployments.

Capability Modeling: Agent capabilities are modeled
through:

o Sensor parameters: Detection range, accuracy, field of
view

o Mobility parameters: Speed, traversability constraints

o Communication parameters: Range, bandwidth

The task allocator accounts for capabilities when assigning
det,i V4

tasks:
, ,1 36
dreq (7)) Ureq (U) ) G0

Tasks are preferentially assigned to capable agents:

Capability, (v) = min (

__ Priority(v) - Capability, (v)

Bid; (v) = o) (37)

- LoadFactor;

Mixed Teams: Experiments with mixed teams of ground
robots and drones show complementary strengths:

« Drones provide rapid coverage of large open areas
e Ground robots perform detailed inspection in cluttered
spaces
o Coordination allows efficient task distribution based on
capabilities
A 2-ground + 1-drone team achieved 15% better SPL than a
3-ground team in our large facility environment, demonstrating
the value of heterogeneity.

C. Deployment Considerations

Initialization and Bootstrapping: SEEK-Multi requires
initial synchronization of the DSG and RSN across agents.
In practice, this can be achieved through:

o Pre-loading from a common map server

o Incremental sharing during a brief synchronization phase

e Graceful handling of partial initialization with incremen-
tal updates

Real-Time Performance: The computational requirements
of SEEK-Multi are modest:

« Belief updates: O(M) per observation

o Task allocation: O(M log M) per round

« Path planning: O(M?) using Dijkstra’s algorithm

On modern embedded processors, all components run in
real-time with computation times under 50ms per step.

Integration with Existing Systems: SEEK-Multi can be
integrated with existing robot software stacks:

¢ ROS/ROS2 nodes for perception, navigation, and com-
munication

o Standard message formats for interoperability

e Modular design allowing component substitution

D. Comparison with Alternative Approaches

Learning-Based Coordination: Recent work has explored
end-to-end learning for multi-agent coordination [21, 35].
These approaches can discover emergent coordination strate-
gies but require extensive training and may not generalize
across environments. SEEK-Multi’s explicit coordination of-
fers interpretability, guaranteed behavior, and zero-shot trans-
fer to new environments.



Centralized Planning: Fully centralized approaches [49]
can achieve optimal coordination but require reliable commu-
nication to a central node. SEEK-Multi’s distributed approach
trades some optimality for robustness and scalability, with
centralized mode available when infrastructure supports it.

Market-Based Approaches: SEEK-Multi’s auction mech-
anism builds on market-based coordination [20] but incorpo-
rates semantic priors for improved efficiency. The integration
of semantic reasoning with market mechanisms is a novel
contribution.

E. Limitations and Future Work
Current Limitations:

« Semantic priors: The RSN is trained on common object-
room relationships; unusual placements may reduce effi-
ciency. Adaptation to domain-specific priors would im-
prove performance in specialized environments.

¢ Communication model: We assume reliable message
delivery within range (excluding explicit packet loss
experiments). Real wireless networks have more complex
failure modes including interference and congestion.

« Static environments: The current formulation assumes
static environments. Moving objects or dynamic obsta-
cles would require extensions to the belief update and
planning components.

« Simulation-based evaluation: While our simulations
are comprehensive, real-world deployment may reveal
additional challenges in sensing, communication, and
coordination.

Future Directions:

o Real-world deployment: Implementing SEEK-Multi on
physical robot teams to validate simulation results and
identify real-world challenges

e Learned communication: Integrating learned commu-
nication strategies that adapt message content based on
relevance and bandwidth

o Dynamic environments: Extending to environments with
moving objects, people, and changing conditions

o Hierarchical coordination: Developing hierarchical ap-
proaches for scaling to larger teams (10+ agents)

« Human-robot teaming: Incorporating human operators
who can provide high-level guidance or take over specific
tasks

o Active learning: Updating semantic priors online based
on accumulated experience

VIII. CONCLUSION

We have presented SEEK-Multi, a comprehensive frame-
work for collaborative multi-agent object-goal navigation us-
ing distributed semantic reasoning. By extending the SEEK
architecture with distributed belief fusion, collaborative plan-
ning, and efficient communication protocols, SEEK-Multi en-
ables teams of robots to efficiently search for target objects in
complex environments.

The key technical contributions include:

o A distributed belief fusion algorithm based on consensus
protocols with provable convergence guarantees

e An auction-based task allocation mechanism that incor-
porates semantic priors for improved efficiency

e« A communication protocol that balances information
sharing with bandwidth constraints

¢ Support for both centralized and decentralized coordina-
tion modes

Our extensive experiments demonstrate:

o Near-linear speedup with up to 4 agents (3.1x speedup
with 4 agents)

o High success rates maintained across configurations (94-
97%)

o Graceful degradation under communication failures (dis-
tributed mode maintains 91% of baseline SPL at 50%
message loss)

o Significant improvement over uncoordinated and non-
semantic baselines (37-69% faster)

o Consistent performance across environment sizes and
configurations

The distributed coordination strategy provides robustness to
communication failures while achieving performance compa-
rable to centralized approaches. Ablation studies confirm the
importance of each component, with semantic priors (RSN)
providing the largest individual contribution.

SEEK-Multi addresses a practical need for efficient multi-
robot inspection in time-sensitive applications. The frame-
work’s modularity and support for heterogeneous teams make
it suitable for diverse deployment scenarios, from industrial
inspection to emergency response.

Future work will focus on several promising directions:

o Real-world deployment: Validating the approach on
physical robot teams in real inspection scenarios

o Learned communication: Integrating learned commu-
nication strategies that optimize message content and
timing

o Dynamic environments: Extending to environments with
moving objects and changing conditions

o Hierarchical coordination: Developing approaches for
scaling to larger teams of 10+ agents

o Human-robot teaming: Incorporating human operators
for guidance and oversight

We believe SEEK-Multi represents a significant step toward
practical multi-robot semantic inspection systems that can
operate efficiently in complex, real-world environments.
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APPENDIX

A. Task Allocation Algorithm

Algorithm 2 provides detailed pseudocode for the auction-
based task allocation mechanism used in SEEK-Multi.

Algorithm 2 Auction-Based Task Allocation

Require: Tasks 7, Agents R, DSG G, Belief P(y¢s)
Ensure: Allocation A: 7 — R

1: Initialize prices p; = Priority(¢) for all t € T
Initialize allocation A = ()
Initialize load L; =0 for all r; € R
while unassigned tasks exist AND iterations < max_iter
do

Ll

5 for each agent r; do

6 LoadFactor; < exp(—/ - L;)

7: for each unassigned task ¢ do

8 Cost;(t) < shortest path cost from z; to ¢
9: byt + #{t)_& - LoadFactor;
10: end for

11: t7 < arg max, by

12: Submit bid (7, t}, b )

13: end for

14: for each task ¢ do

15: Bidders(t) < {i : t7 =t}

16: if |Bidders(t)] = 1 then

17: 1" < single bidder

18: A(t) < 7=

19: Liy« < L« +1

20: else if |Bidders(t)| > 1 then

21: i 4 arg max; cgigders(¢) Vit
22: A(t) 7=
23: Ly« < L« +1

24: Increase price: p; <— (14 6) - p;
25: end if

26: end for

27: end while
28: return A

The algorithm has the following properties:

« Convergence in O(M log M) iterations for M tasks
o e-competitive with optimal allocation

« Distributed execution with O(NN') messages per round
o Load balancing through exponential penalty

B. Belief Fusion with Covariance Intersection

For scenarios where observation correlations are unknown,
we provide an alternative fusion method using covariance
intersection [30]:

Pryeg = @1 PT 1 +w2Py ! (38)
Mfused = Pfused(wlpfl,ull + WZP;1N2) (39)
where w; + we = 1 are weights chosen to minimize the

determinant of Prygeq.

The optimal weights can be found by solving:

w* = argmindet(wP; ' 4 (1 —w)Py 1) 7!
we(0,1]

(40)

This can be computed efficiently using a line search.

C. Distributed Consensus Algorithm

Algorithm 3 presents the distributed consensus algorithm
for belief synchronization.

Algorithm 3 Distributed Belief Consensus

Require: Local belief P;, Confidence c;, Neighbors N;
Ensure: Updated belief P/, Updated confidence ¢;

1: Broadcast (P;, ¢;) to all j € N

2: Receive {(P;j,¢;) : j € N;}

3: W(—Ci—FE-eMCj

c -P‘+ . ci P
. / v GEN,; €31
. P+ i

4
oA 2 2
5. ¢ <y /c +ZjeNi cf
6
7

: Normalize: P/ <— P//>" P/ (v)
/

: return P/, ¢

D. Detailed Scaling Analysis
Table VII provides additional metrics for the scaling exper-
iments.

TABLE VII: Detailed scaling results with 95% confidence
intervals.

N Avg. Steps  Overlap Msg/Agent Eff.

1 127 £ 12 — — 100%
2 68 + 8 6.2% 43 93.4%
3 49 +6 8.7% 3.8 86.4%
4 41 £5 11.3% 35 77.4%
5 36 £5 14.8% 32 70.6%
6 33+ 4 18.2% 3.0 64.1%

Efficiency is computed as Eff(N) = NLILN representing

how effectively additional agents translate to speedup.

E. Sensitivity Analysis

We analyze sensitivity to key parameters:

Detection Probability: Varying py from 0.7 to 0.99:

e pg =0.7: SPL = 0.71, Steps = 58

e pg = 0.8: SPL = 0.75, Steps = 52

e pg =0.9: SPL = 0.78, Steps = 49

e pg = 0.99: SPL = 0.81, Steps = 46

Higher detection probability improves performance by re-
ducing the need for repeat visits.

RSN Accuracy: We evaluate with degraded RSN accuracy
by adding noise to priors:

o Perfect RSN: SPL = 0.78

¢ 10% noise: SPL = 0.75

¢ 20% noise: SPL = 0.71

¢ 50% noise: SPL = 0.64



o Random priors: SPL = 0.55

SEEK-Multi maintains significant advantage even with im-

perfect semantic priors.

Communication Latency: Varying message latency from 0

to 5 steps:

o 0 steps: SPL = 0.78
e 1 step: SPL = 0.77
e 2 steps: SPL = 0.75
e 5 steps: SPL = 0.71

The system is robust to moderate latency due to local
decision-making capabilities.

F. Environment Layouts

e Operations wing: Control room, 4 monitoring stations,
equipment room

o Warehouse: 6 storage areas, loading dock, maintenance
shop

o Labs: 4 research labs, 2 clean rooms, equipment storage

o Common: Cafeteria, 4 restrooms, 4 hallways, 2 stairwells,
utility rooms

« Approximate total area: 2000 m?

o Average room size: 42 m?

G. Object Placement Model

Objects are placed according to learned semantic priors [1]:

TABLE VIII: Example object-room probabilities from RSN.

The office environments used in experiments are procedu-
rally generated with the following characteristics:
Small Office (12 rooms):

Entrance (1), Lobby (1), Offices (2)

Conference room (1), Kitchen (1), Break room (1)
Hallways (2), Restroom (1), Storage (1), Server room (1)
Approximate total area: 300 m?

Average room size: 25 m?

Medium Building (24 rooms):

Ground floor: Entrance, lobby, reception, 2 meeting
rooms, kitchen, 2 restrooms, 4 offices

Upper floor: 6 offices, 2 labs, conference room, break
room, storage, server room

Approximate total area: 800 m?

Average room size: 33 m?

Large Facility (48 rooms):

Admin wing: Reception, 8 offices, 2 conference rooms,
break room

Object Kitchen Office Hallway
Fire extinguisher 0.15 0.30
First aid kit 0.10 0.20
AED 0.05 0.40
Emergency exit sign 0.05 0.50

H. Sensor Model Details

The observation model includes:

o Field of view: 90° horizontal, 60° vertical
o Detection range: 5m nominal, extending to 10m for

thorough search

o True positive rate: 0.9 (varies with distance)

« False positive rate: 0.05 per observation
o Position noise: Gaussian with o = 0.5m

« Classification accuracy: 0.95 for target object class
Detection probability decreases with distance:

Ddet(d) = pyp - €xp (—

(d — dop)®
203

)

(41)

where dop = 3m is the optimal detection distance.
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